![]() ![]() | 数学:诗与美 图书类型:教育科普 作 者:Ron Aharoni、 蔡聪明 原出版社:SM 版权信息:简体版权存在 图书页码:352 图书开本:150×210 mm 出版日期:2019-08 审阅资料:PDF 联系人:Annty |
数学与诗有什么关系呢?似乎是毫无关系。
数学处理的是抽象的事物,而诗处理的是感情的事情。然而,两者具有某种本质上的共通点,那就是:美。
本书《数学、诗与美》尝试要解开这两个领域之间的类似之谜。它要示明,数学论述与诗如何以相同的方式感动我们。我们比较数学与诗的技巧,目的是要证明它们能够激起相同的美感。
正如罗素 (Bertrand Russell) 所说的:“如果正确地看待数学,它不但拥有真理,而且还具有崇高的美──冷酷且严肃,像雕刻……,严格的纯淨,能够达到凛然完美的境界,只有最伟大的艺术能够企及。”
若一位数学家不具有几分诗人的气质,那么他就永远成不了一个完整的数学家。
本书分成三篇:秩序、数学家与诗人如何思考、知觉的两个层面。
Ron Aharoni
Ron Aharoni是以色列理工学院数学科学中心教授 。专长是组合学与图论。
译者:蔡聪明
一生在台大数学系从事数学研究与数学教育,最喜爱数学、物理学、哲学与诗。目前已经退休。平时喜爱旅游、登山健行、打网球以及从事普及数学的写作。虽然写作是快乐中有辛苦,甚至是甜蜜中有痛苦,但是仍然乐此不疲。衷心的愿望是:帮助年轻学子也喜爱数学,体验数学的妙趣,并且扭转他(她)们普遍对数学是面目可憎的刻板印象。
目录
导论:魔法
1. 数学与诗
2. 转移作用
第I篇:秩序
3. 蚂蚁在竿子上的奇妙现象
4. 隐藏的秩序
5. 发现或发明
6. 秩序与美
7. 数学的和声
8. 为什么根号2不是有理数?
9. 实数系
10. 规律的奇蹟
11. 简单猜测具有复杂的证明
12. 独立事件
第II篇:数学家与诗人如何思考
13. 数学的意象与诗的意象
14. 隐晦的威力
15. 浓缩
16. 数学的乒乓游戏
17. 上帝之书
18. 诗的乒乓游戏
19. 守恒定律
20. 来自某处的念头
21. 数学的三种类型
22. 拓扑学
23. 婚姻的配对
24. 想像力
25. 一个魔数
26. 真实或想像
27. 无预期的组合
28. 什么是数学?
29. 深刻的套套逻辑
30. 对称性
31. 不可能办到的事情
32. 无穷的夸大
33. 康拓的故事
34. 最美丽的证明?
35. 诡论与矛盾修饰法
36. 自我指涉与哥德尔定理
37. 前往无穷大的半途:大数
38. 无穷小量
39. 无穷多个数之和为有限数
40. 情节逆转
第III篇:知觉的两个层面
41. 不知道的知道
42. 内容与外壳
43. 改变
44. 隔离
45. 无尽的相遇
附录A:数学领域
附录B:数的集合
附录C:本书提到的诗的机制
by lena
Copyright (2005-2023) 凯琳国际文化版权代理 CA-LINK INTERNATIONAL LLC. All Rights Reserved.
Icons on home page are created by Freepik.